You may think that your students are only interested in fiction readingbut the truth is that children are fascinated by the world around them. Studies have long touted the benefits of teaching students how to read nonfiction. Nonfiction text helps students develop background knowledgewhich in turn assists them as they encounter more difficult reading throughout their school years. Nonfiction can also help students learn to read text features not often found in works of fiction, including headings, graphs, and charts. Students used to rely on nonfiction **non fiction book report activities** for research projects from science to art. With the rise of digital sources, many students choose to simply do their research online.

This help me write trigonometry research proposal page contains details on …. Use our professional online writing service offers to ensure excellent grades and complete your homework Exactly how I feel too. Make write my calculus book review your dreams become write my calculus book review a ….

We write essays. Site web. Toggle navigation. Write my calculus book review. Partager ce contenu. Articles similaires. La Sicap S. At times you may think of yourself as a travel guide, leading the reader through territory charted only by you. A successful mathematical writer will lay out for her readers two logical maps, one which displays the connections between her own work and the wide world of mathematics, and another which reveals the internal logical structure of her own work.

In order to advise your reader, you must first consider for yourself where your work is located on the map of mathematics. If your reader has visited nearby regions, then you would like to recall those experiences to his mind, so that he will be better able to understand what you have to add and to connect it to related mathematics. Asking several questions may help you discern the shape and location of your work:.

It is necessary that you explicitly consider this question of placement in the structure of mathematics, because it will linger in your readers' minds until you answer it. Failure to address this very question will leave the reader feeling quite dissatisfied. In addition to providing a map to help your readers locate your work within the field of mathematics, you must also help them understand the internal organization of your work:.

Since your reader does not know what you will be proving until after he has read your paper, advising him beforehand about what he will read, just as the travel agent prepares his customer, will allow him to enjoy the trip more, and to understand more of the things you lead him to.

To honestly and deliberately explain where your work fits into the big picture of mathematical research may require a great deal of humility. You will likely despair that your accomplishments seem rather small. Do not fret! Mathematics has been accumulating for thousands of years, based on the work of thousands or millions of practitioners.

It has been said that even the best mathematicians rarely have more than one really outstanding idea during their lifetimes. It would be truly surprising if yours were to come as a high school student! Once you have considered the structure and relevance of your research, you are ready to outline your paper. The accepted format for research papers is much less rigidly defined for mathematics than for many other scientific fields.

You have the latitude to develop the outline in a way which is appropriate for your work in particular. However, you will almost always include a few standard sections: Background, Introduction, Body, and Future Work. The background will serve to orient your reader, providing the first idea of where you will be leading him.

In the background, you will give the most explicit description of the history of your problem, although hints and references may occur elsewhere. The reader hopes to have certain questions answered in this section: Why should he read this paper? What is the point of this paper? Where did this problem come from? What was already known in this field? Why did this author think this question was interesting? If he dislikes partial differential equations, for example, he should be warned early on that he will encounter them.

If he isn't familiar with the first concepts of probability, then he should be warned in advance if your paper depends on that understanding. Remember at this point that although you may have spent hundreds of hours working on your problem, your reader wants to have all these questions answered clearly in a matter of minutes. In the second section of your paper, the introduction, you will begin to lead the reader into your work in particular, zooming in from the big picture towards your specific results.

This is the place to introduce the definitions and lemmas which are standard in the field, but which your readers may not know. The body, which will be made up of several sections, contains most of your work. By the time you reach the final section, implications, you may be tired of your problem, but this section is critical to your readers.

You, as the world expert on the topic of your paper, are in a unique situation to direct future research in your field. A reader who likes your paper may want to continue work in your field. If you were to continue working on this topic, what questions would you ask? Also, for some papers, there may be important implications of your work.

If you have worked on a mathematical model of a physical phenomenon, what are the consequences, in the physical world, of your mathematical work? These are the questions which your readers will hope to have answered in the final section of the paper. You should take care not to disappoint them!

Section 3. Formal and Informal Exposition. Once you have a basic outline for your paper, you should consider "the formal or logical structure consisting of definitions, theorems, and proofs, and the complementary informal or introductory material consisting of motivations, analogies, examples, and metamathematical explanations. This division of the material should be conspicuously maintained in any mathematical presentation, because the nature of the subject requires above all else that the logical structure be clear.

Thus, the next stage in the writing process may be to develop an outline of the logical structure of your paper. Several questions may help: To begin, what exactly have you proven? What are the lemmas your own or others on which these theorems stand. Which are the corollaries of these theorems? In deciding which results to call lemmas, which theorems, and which corollaries, ask yourself which are the central ideas.

Which ones follow naturally from others, and which ones are the real work horses of the paper? The structure of writing requires that your hypotheses and deductions must conform to a linear order. However, few research papers actually have a linear structure, in which lemmas become more and more complicated, one on top of another, until one theorem is proven, followed by a sequence of increasingly complex corollaries.

On the contrary, most proofs could be modeled with very complicated graphs, in which several basic hypotheses combine with a few well known theorems in a complex way. There may be several seemingly independent lines of reasoning which converge at the final step. It goes without saying that any assertion should follow the lemmas and theorems on which it depends.

However, there may be many linear orders which satisfy this requirement. In view of this difficulty, it is your responsibility to, first, understand this structure, and, second, to arrange the necessarily linear structure of your writing to reflect the structure of the work as well as possible. The exact way in which this will proceed depends, of course, on the specific situation. One technique to assist you in revealing the complex logical structure of your paper is a proper naming of results.

By naming your results appropriately lemmas as underpinnings, theorems as the real substance, and corollaries as the finishing work , you will create a certain sense of parallelness among your lemmas, and help your reader to appreciate, without having struggled through the research with you, which are the really critical ideas, and which they can skim through more quickly.

Another technique for developing a concise logical outline stems from a warning by Paul Halmos, in HTWM, never to repeat a proof:. If several steps in the proof of Theorem 2 bear a very close resemblance to parts of the proof of Theorem 1, that's a signal that something may be less than completely understood. Other symptoms of the same disease are: 'by the same technique or method, or device, or trick as in the proof of Theorem When that happens the chances are very good that there is a lemma that is worth finding, formulating, and proving, a lemma from which both Theorem 1 and Theorem 2 are more easily and more clearly deduced.

These issues of structure should be well thought through BEFORE you begin to write your paper, although the process of writing itself which surely help you better understand the structure. Now that we have discussed the formal structure, we turn to the informal structure. The formal structure contains the formal definitions, theorem-proof format, and rigorous logic which is the language of 'pure' mathematics.

The informal structure complements the formal and runs in parallel. It uses less rigorous, but no less accurate! For although mathematicians write in the language of logic, very few actually think in the language of logic although we do think logically , and so to understand your work, they will be immensely aided by subtle demonstration of why something is true, and how you came to prove such a theorem. Outlining, before you write, what you hope to communicate in these informal sections will, most likely, lead to more effective communication.

Before you begin to write, you must also consider notation. The selection of notation is a critical part of writing a research paper. In effect, you are inventing a language which your readers must learn in order to understand your paper. Good notation firstly allows the reader to forget that he is learning a new language, and secondly provides a framework in which the essentials of your proof are clearly understood.

Bad notation, on the other hand, is disastrous and may deter the reader from even reading your paper. In most cases, it is wise to follow convention. Using epsilon for a prime integer, or x f for a function, is certainly possible, but almost never a good idea. Section 4: Writing a Proof. The first step in writing a good proof comes with the statement of the theorem. A well-worded theorem will make writing the proof much easier. The statement of the theorem should, first of all, contain exactly the right hypotheses.

Of course, all the necessary hypotheses must be included. On the other hand, extraneous assumptions will simply distract from the point of the theorem, and should be eliminated when possible. When writing a proof, as when writing an entire paper, you must put down, in a linear order, a set of hypotheses and deductions which are probably not linear in form. I suggest that, before you write you map out the hypotheses and the deductions, and attempt to order the statements in a way which will cause the least confusion to the reader.

This is the traditional backward proof-writing of classical analysis. It has the advantage of being easily verifiable by a machine as opposed to understandable by a human being , and it has the dubious advantage that something at the end comes out to be less than e.

The way to make the human reader's task less demanding is obvious: write the proof forward. Neither arrangement is elegant, but the forward one is graspable and rememberable.

- custom content ghostwriter website ca
- ofdm algorithm resume
- esl dissertation results writing for hire usa
- live chemistry homework help
- guilt kite runner essay
- resume template 2003 word
- professional literature review proofreading sites ca
- write chapter four dissertation
- where to get free essays
- operations resume examples
- esl masters essay writer services ca